Gardening improves health and quality of life, connecting us to our local environment. Plus, you can eat organic fruits and veggies at very little cost. Yet for all these fantastic benefits, remembering to water can still take a backseat to our busy lives. Fortunately, home automation is easier than ever with inexpensive and accessible microcontrollers like the Raspberry Pi and Arduino.
This tutorial details the construction process for a remotely controlled solenoid irrigation valve. In other words, a home computer controls the water flow of an outdoor hose spigot, or bib. The materials cost is about $30-40, excluding the Raspberry Pi (RPi). Cheaper parts can be found with patience and creativity.
The design is intended as a simple introduction to building a complete, personalized home irrigation system. It is also intended to encourage simple DIY solutions to everyday problems. Make modifications and upgrades to suit your needs, resources, and skill level. To conserve water, include drip irrigation and asoil moisture sensor.
Note: This project involves high voltage which requires extreme caution. Always check power connections before touching exposed wires.
Step 1: Materials
— Raspberry Pi 2 Model B, GPIO Cable , GPIO cable adapter + breadboard
This tutorial assumes the RPi has all GPIO libraries. To install outdoors, the RPi also needs a WiFi adapter and to be accessible by SSH or other remote login.
This tutorial uses a 24 VAC solenoid for a 3/4″ hose spigot.
Some background: there are two main types of solenoids: AC or DC.
An AC solenoid valve turns water on when voltage is applied, and turns it off when the power is off. The drawback is that it uses AC voltage, requiring an adapter to convert the wall voltage, 120 VAC, into the 24 VAC voltage needed to trigger the valve. Outdoor Installation likely requires an extension cord.
A DC solenoid valve allows for a battery powered system. It can easily be modified to be wireless and powered by renewable energy using a medium solar panel (~10 W). However, most DC irrigation valves are latching solenoids and require switching the valve lead polarity to turn water on and off.
I chose an AC valve for the first prototype because I already had a few parts.. and adequate rechargeable batteries can be expensive.
The Solid State Relay, or relay, is the intermediary switch between the RPi and the solenoid valve. This tutorial uses a Crouzet Model OAC5-315; its input is 3 – 8 VDC and its output is between 24 – 120 VAC at 1A.
Sized to fit the relay, GPIO pins, transistor and resistor.
— 120 VAC to 24 VAC power adapter
Use an extension cord and/or longer leads to install outdoors.
— 22-gauge stranded wire (insulated), min. 10 feet
— Waterproof container
I used a leftover Waterproof Project Case wrapped with waterproof tape. Cheap/free containers are easy to find; Talenti ice cream containers are an example, and also happen to contain delicious ice cream. With small containers, be sure exposed AC connections are completely covered in epoxy to protect the RPi.
— Optional: Waterproof connectors, waterproofing tape/lots of duct tape
Post a Comment